Minitab Project Report

HCH2 Test - C.R.Haeger
Date: 7/22/07
Test Time: $3 \mathrm{pm}-430 \mathrm{pm}$
Location: Columbus, Ohio Area, 2 mile NS section of freeway ("level" - Elevations TBD)
Tires: \quad OEM at 44 psi cold
Vehicle: $\quad \mathrm{HCH} 2$ wiit 8900 miles $/ 5$ months on it
Oil: \quad Mobil 1 Synth 0w20, changed at 8000 miles
Weather: $\quad 84 \mathrm{~F}, \mathrm{NE}$ wind at 7 mph
Test Method:

- Enter freeway (say Northbound), accelerate to condition Speed, set CC then reset B trip FE meter at set start points (mile marker xx)
- Travel 0.8 mile by trip B ODO then read FE for the 0.8 mile segment.
- Exit freeway, turn around and begin segment going South direction for same 0.8 miles.
- For AC = On conditions, set AC on, control to 58F, once thru air and Fan on MAX. For AC=Off, set Fan at 2 bars. Windows up in all cases.
- Avoided drafting vehicles
- Remained in right hand lane
- Did not see SOC do any forced regen during test - bars at 507 throughout test. Did however try to avoid three conditions or more with AC on to help preserve SOC.

Test conditions and response (FE)
Speed (mph), Direction ($\mathrm{N}=1$), AC ($1=\mathrm{On}$), FE (MPG)

65	1	0	50.7
60	0	0	61.7
70	1	1	38.6
65	0	1	41.5

aborted N run due to drafing semi in way....

55	0	1	49.6
60	1	1	46.0
65	0	0	52.5
60	1	0	60.6
60	0	1	46.6
65	1	1	39.9
70	0	0	40.1
55	1	0	64.6
70	0	1	39.5
55	1	1	48.4
55	0	0	65.7
70	1	0	43.1

Appears that both speed and AC on (RED) reduce FE at speeds exceeding 55 mph . Appears that reduced FE at 70 mph impacted less by AC than at 55 mph .

Speed and AC lower FE by 17 mpg and 11 mpg respectively in this test. Appears that direction had little impact on average FE .

Not suprisingly, lower speed and no AC provide the highest FE (65mpg+) while high speed, coupled with AC use gave lowest FE (40 mpg or less). From this you might get similar FE (50 mpg) at say $55 \mathrm{mph} /$ with ACor $67 \mathrm{mph} /$ no AC.

From the model, both speed, AC and the speed x AC interaction are significant. The test model appears to capture almost all (99\%) of the FE variation seen - a decent model. The variation in FE seems to get smaller for high FE (55, 60 mph with AC off).

General Linear Model: FE (MPG) versus Speed (mph), AC (1=On)

Factor	Type L	Levels	Values				
Speed (mph)	fixed	4	55, 60,	65, 70			
AC ($1=0 \mathrm{n}$)	fixed	2	0,1				
Analysis of V	Variance	for FE	(MPG) ,	using Ad	justed S	for T	ts
Source		DF	Seq SS	Adj SS	Adj MS	F	P
Speed (mph)		3	682.01	682.01	227.34	183.43	0.000
AC ($1=0 n$)		1	493.95	493.95	493.95	398.55	0.000
Speed (mph)*A	AC (1=On)) 3	112.71	112.71	37.57	30.31	0.000
Error		8	9.92	9.92	1.24		
Total		15	1298.58				
$S=1.11327$	$\mathrm{R}-\mathrm{Sq}=$	99.24\%	R-Sq ${ }^{\text {(}}$	adj) $=9$	8.57%		

